振动声学指纹概念

时间:2023年09月09日 来源:

三、各类高压开关监测系统的功能特点3.1GIS本体监测3.1.1技术背景GIS运行时,电流通过高压导体时产生的电动力引起振动,由于导体所受电动力正比于负载电流的平方,GIS本体振动信号的基频为100Hz。当存在机械故障时,振动信号频谱分布将发生改变,产生谐波分量。GIS本体机械型缺陷主要是指内部存在开关触头接触异常、导电杆接触不良、母线卡簧松动、屏蔽罩松动等异常时,在交变电场作用下发生异常振动,长期振动可能导致导电杆和绝缘件松动,引发局部放电,甚至造成绝缘事故。异常振动还可能造成SF6气体泄漏,损坏绝缘子和绝缘支柱,影响外壳接地的牢固,危及主设备运行安全。因此开展振动声学指纹检测、实时频谱分析并提取相关特征参量对提高GIS运行的可靠性具有重要意义。GZAFV-06T型便携式变压器声纹振动 监测与诊断系统功能特点。振动声学指纹概念

振动声学指纹概念,振动

3.2.3云平台服务器各项监测的数据经现场的数据采集装置通过4G/5G无线传输模组(或电力光纤专网)传送至云服务器进行存储及深度计算,远端通过浏览器登录云服务器可随时随的查看系统监测与诊断内容,对变压器进行运行状态的监测与诊断分析。云平台系统结构图如下图7所示,采用B/S结构(浏览器/服务器模式),提供本系统的数据深度计算、存储及浏览器查看服务,便于管理。3.3信号分析与处理3.3.1OLTC运行状态分析OLTC动作时,典型声纹振动和驱动电机电流的信号如下图8所示。通过分解时域内典型信号区间,可有效判断分接开关驱动电机启动、分接选择器断开、分接选择器闭合、切换开关动作、驱动电机制动等动作顺序,进而分析分接开关的运行状态。智能振动声学指纹功能特点GZK-1000MP 型断路器机械特性监测子系统。

振动声学指纹概念,振动

二、相关标准GB/T4208外壳防护等级(IP代码);GB/T10230.1分接开关第1部分:性能要求和试验方法;GB/T10230.2分接开关第2部分:应用导则;DL/T265变压器有载分接开关现场试验导则;DL/T574变压器分接开关运行维修导则;DL/T846.8-2017高电压测试设备通用技术条件第8部分:有载分接开关测试仪;DL/T860变电站通信网络和系统;DL/T1430变电设备在线监测系统技术导则;DL/T1432.1变电设备在线监测装置检验规范第1部分:通用检验规范;DL/T1538电力变压器用真空有载分接开关使用导则;DL/T1540油浸式交流电抗器(变压器)运行振动测量方法;DLT1694.2高压测试仪器及设备校准规范第2部分:电力变压器分接开关测试仪;DL/T1805电力变压器用有载分接开关选用导则;Q/GDW383智能变电站技术导则;

3.4.2监测系统的智慧化功能Ø具备边缘计算能力,就地采集并处理振动声学指纹信号及驱动电机电流信号,完成有载分接开关信号包络、ATF等分析,完成绕组及铁芯振动信号频谱分析及参数计算,根据传输层要求统一通讯接口及数据结构,根据平台层及应用层要求上传分析结果;Ø具备实物ID管理功能,提供有载分接开关、绕组及铁芯运行状态信息链接入口,可扫码读取设备在线监测历史数据及趋势。通过扫码或RFID识别设备,读取设备ID信息,通过站内网络(4G/5G/WIFI)传输给云端服务器,向服务器请求该设备的详细信息,以及详细的运行状态,测试信息等。杭州国洲电力科技有限公司变压器/电抗器振动声学指纹监测系统相关标准。

振动声学指纹概念,振动

一、概述电力系统中的开关设备主要包括气体绝缘金属封闭开关设备(英文简称GIS;内部主要是断路器、隔离开关等)、敞开式开关设备(英文简称AIS;主要是高压开关、隔离开关等)、开关柜,各类开关设备材料、工艺、设计、安装过程中的缺陷以及频繁动作极易引起机械故障,严重时更会导致电气火灾、停电等事故。本章节以GIS为例做简单分析目前运行管理情况。GIS是当今输电网络中一种应用***的电气设备。通过将变电站中断路器、隔离开关、接地开关、电压/电流互感器、避雷器、连接母线、电缆终端、进出线套管等一次设备经过优化设计并有序地结合为整体,在金属壳内封装起来,设备内部充SF6气体作为灭弧和绝缘介质组成的封闭组合电器。与传统的敞开式设备相比较,GZAF-1000T系列变压器/电抗器振动声学指纹监测系统主界面。电抗器振动声纹监测原理图

杭州国洲电力科技有限公司振动监测系统软件界面。振动声学指纹概念

4.2.3根据各时频信号相关系数、能量分布曲线特征参量(相关系数、最大值、平均值、峰度、偏度)、ATF图谱特征参量(六等分区间均值)、总谐波畸变率、基频信号能量比等状态量,采用深度学习算法,自动判断变压器运行状态及疑似机械故障类型。图16基于声纹振动法的故障诊断4.2.4结合变压器的带电检测、智能巡检以及其他在线监测的状态量,进行数据的多参量融合分析,形成基于多源数据的故障预警机制,多参量融合分析不仅提高了疑似故障识别的准确性,而且还能**降低因单个参量判别故障带来的误报。例如,对于变压器疑似问题的诊断可结合负荷、损耗、绕组机械振动信号、油温、以及历史电流电压情况分析,在监测到变压器的声纹振动频谱时,系统可以自动去查询变压器的历史电流和电压信号,如果发现在某段时期确实有大电流冲击,可给出预警:变压器可能存在绕组变形的异常。振动声学指纹概念

信息来源于互联网 本站不为信息真实性负责