杭州4寸碳化硅衬底

时间:2021年03月29日 来源:

在半导体行业的发展进程中,人们通常把Si和Ge元素半导体称为***代电子材料,把GaAs、InP、InAs等化合物半导体称为第二代半导体材料,而把Ⅲ族氮化物(主要包括GaN、相关化合物InN、AIN及其合金)、SiC、InSe、金刚石等宽带隙的化合物半导体称为第三代半导体材料。

碳化硅晶体(sic)结构具有同质多型的特点,其基本结构是Si-C四面体结构。它是由四个Si原子形成的四面体包围一个碳原子组成,按相同的方式一个Si原子也被四个碳原子的四面体包围,属于密堆积结构。 碳化硅材料的重要用途还包括:微波器件衬底、石墨烯外延衬底、人工钻石。杭州4寸碳化硅衬底

碳化硅被誉为下一代半导体材料,因为其具有众多优异的物理化学特性,被广泛应用于光电器件、高频大功率、高温电子器件。本文阐述了SiC研究进展及应用前景,从光学性质、电学性质、热稳定性、化学性质、硬度和耐磨性、掺杂物六个方面介绍了SiC的性能。SiC有高的硬度与热稳定性,稳定的结构,大的禁带宽度 ,高的热导率,优异的电学性能。同时介绍了SiC的制备方法:物***相沉积法和化学气相沉积法,以及SiC薄膜表征手段。包括X射线衍射谱、傅里叶红外光谱、拉曼光谱、X射线光电子能谱等。***讲了SiC的光学性能和电学性能以及参杂SiC薄膜的光学性能研究进展。河北碳化硅衬底进口4寸半绝缘SIC禁带宽度较大,具有热传导率高、耐高温、抗腐蚀、化学稳定性高等特点。

  SiC很早已被发现,由于它化学和物理稳定性高,过去很长的时问内*在工业中作为研磨和切割材料。SiC在超过1800℃时才升华分解,高温生长单晶和化学机械处理都十分困难,Sic晶体的主要制备方法有:Acheson法(1891年),Lely法(1955年),改良Lely法(1978年)。**早使用Lely法——升华再结晶工艺生长sic单晶,用感应加热法将装有多晶sic粉末的多孔石墨管加热到2500℃,在惰性气体(氩气)环境中升华出Sic,生成六角形状的、大小和结晶类型不定但直径很小、杂质含量较高的单晶板块。

碳化硅耐高温,与强酸、强碱均不起反应,导电导热性好,具有很强的抗辐射能力。用碳化硅粉直接升华法可制得大体积和大面积碳化硅单晶。用碳化硅单晶可生产绿色或蓝色发光二极管、场效应晶体管,双极型晶体管。用碳化硅纤维可制成雷达吸波材料,在***工业中前景广阔。碳化硅超精细微粉是生产碳化硅陶瓷的理想材料。碳化硅陶瓷具有优良的常温力学性能,如高的抗弯强度,优良的抗氧化性,耐腐蚀性,非常高的抗磨损以及低的磨擦系数,而且高温力学性能(强度、抗蠕变性等)是已知陶瓷材料中比较好的材料,如晶须补强可改善碳化硅的韧性和强度。

由于碳化硅优异的理化性能,使其在石油、化工、微电子、汽车、航天航空、激光、原子能、机械、冶金行业中***得到应用。如砂轮、喷咀、轴承、密封件、燃气轮机动静叶片,反射屏基片,发动机部件,耐火材料等。 碳化硅作为新兴的战略先导产业,它是发展第3代半导体产业的关键基础材料。

  此外,碳化硅材料的重要用途还包括:微波器件衬底[3]、石墨烯外延衬底[4]、人工钻石。碳化硅(指半绝缘型)是射频微波器件的理想衬底材料,以之为衬底的微波器件其输出功率密度是砷化镓(GaAs)器件的10倍以上,工作频率达到100GHz以上,可以***提高雷达、通信、电子对抗以及智能武器的整体性能和可靠性,使用碳化硅基微波器件的雷达其测距由原来的80~100km提升到现在的超过300km。在碳化硅衬底上外延生长石墨烯,可望制造高性能的石墨烯集成电路,是当前国际研发的热点,IBM(美国)已经投入了巨资进行研发[5],并取得了重要进展,在半绝缘型碳化硅上创建了全球较早全功能石墨烯集成电路[6]。碳化硅晶体的硬度仅次于钻石,其明亮度、光泽度和火彩甚至超过了钻石,基于碳化硅的人工钻石(莫桑钻)也已经面市。SiC作为第三代半导体材料的杰出**由于其特有的物理化学特性成为制作高频、大功率、高温器件的理想材料。上海碳化硅衬底进口n型

为了制造碳化硅半导体器件,需要在晶片表面生长1层或数层碳化硅薄膜,这些薄膜具有不同的n、p导电类型。杭州4寸碳化硅衬底

国际上基本上采用PVT法制备碳化硅单晶。目前能提供4H-SiC晶片的企业主要集中在欧美和日本。其中Cree产量占全球市场的85%以上,占领着SiC晶体生长及相关器件制作研究的前沿。目前,Cree的6英寸SiC晶片已经商品化,可以小批量供货。此外,国内外还有一些初具规模的SiC晶片供应商,年销售量在1万片上下。Cree生产的SiC晶片有80%以上是自已消化的,用于LED衬底材料,所以Cree是全球***一家大量生产SiC基LED器件的公司,这个业务使得它的市场表现突出,公司市盈率长期居于高位杭州4寸碳化硅衬底

信息来源于互联网 本站不为信息真实性负责